EQUIVALENZE – ESERCIZIO 2

Home » ESERCIZI » ESERCIZI FISICA » ESERCIZI SULLE EQUIVALENZE » EQUIVALENZE – ESERCIZIO 2

Problema

Risolvere le seguenti equivalenze tra aree:

$0,003dm^2=…cm^2$

$11,7m^2=…hm^2$

$310mm^2=…dam^2$

$0,433km^2=…m^2$

Svolgimento

Per svolgere le equivalenze proposte partiamo dalla “scaletta” con multipli e sottomultipli delle unità di misura dell’area.

scaletta con multipli e sottomultipli del metro quadrato

In questo caso ogni “salto” da sinistra verso destra corrisponde ad una moltiplicazione $\cdot 100$ mentre un salto da destra verso sinistra corrisponde ad una divisione $:100$.

Partendo da ciò iniziamo a risolvere le equivalenze dell’esercizio.

La prima equivalenza è la seguente $0,003dm^2=…cm^2$ e per risolverla andiamo a rappresentare sulla scaletta delle unità di misura i “salti” che separano i $dm^2$ dai $cm^2$. Otteniamo il seguente schema:

scaletta per equivalenza da decimetri quadrati a centimetri quadrati

Quindi per risolvere l’equivalenza andiamo a moltiplicare $\cdot 100$ il valore numerico di partenza:

$0,003dm^2=(0,003\cdot 100)cm^2=0,3cm^2$


La seconda equivalenza da risolvere è $11,7m^2=…hm^2$ che calcoleremo utilizzando lo stesso procedimento appena visto:

scaletta per equivalenza da metri quadrati ad ettometri quadrati

Quindi l’operazione da effettuare è una doppia divisione $:100$, cioè una divisione $:10000$, da cui otteniamo:

$11,7m^2=(11,7:10000)hm^2=0,00117hm^2$


Passiamo alla terza equivalenza $310mm^2=…dam^2$

scaletta per equivalenza da millimetri quadrati a decametri quadrati

Per risolvere l’equivalenza dobbiamo dividere quattro volte per $100$, ossia dividere per $:100000000$:

$310mm^2=(310:100000000)dam^2=0,00000310dam^2$


La quarta equivalenza è $0,433km^2=…m^2$

scaletta per equivalenza da kilometri quadrati a metri quadrati

Quindi andiamo a moltiplicare $\cdot 1000000$, otteniamo cioè:

$0,433km^2=(0,433\cdot 1000000)m^2=433000m^2$